Ir al contenido principal

Mecanismos de más de 4 barras

Mecanismos de más de 4 barras 

mecanismos de cuatro barras, puede utilizarse para cualquier número de eslabones en una configuración de lazo cerrado. Los mecanismos más complicados pueden tener lazos múltiples que conducen a más ecuaciones que deben resolverse de manera simultánea y que pueden requerir una solución iterativa. 

Wampler presenta un método nuevo, general, no iterativo para el análisis de mecanismos planos que contienen cualquier número de eslabones rígidos conectados por juntas rotacionales o traslacionales

Mecanismo de cinco barras engranado:

tiene un vector más que el de cuatro barras. Su ecuación de lazo vectorial es: 


los sentidos de los vectores de nuevo se eligen de conformidad con los deseos del analista para tener los ángulos de los vectores defi nidos en un extremo conveniente del eslabón. 

Como éste es un mecanismo de cinco barras engranado, existe una relación entre los dos eslabones engranados, los eslabones 2 y 5 en este caso. Dos factores determinan el comportamiento del eslabón 5 con respecto al eslabón 2, es decir, la relación de engranes l y el ángulo de fase f. La relación es:

una ecuación vectorial bidimensional sólo puede resolverse para dos incógnitas, es necesaria otra ecuación para resolver este sistema. Como éste es un mecanismo de cinco barras engranado, existe una relación entre los dos eslabones engranados, los eslabones 2 y 5 en este caso. Dos factores determinan el comportamiento del eslabón 5 con respecto al eslabón 2, es decir, la relación de engranes l y el ángulo de fase f. La relación es; 


Ésta permite expresar q5 en función de q2 en la ecuación 4.23b y reducir el número de incógnitas a dos al sustituir la ecuación 




Observe que la relación l es la relación de los diámetros de los engranes que conectan los dos eslabones (l = diám2/diám5) y el ángulo de fase f es el ángulo inicial del eslabón 5 con respecto al eslabón 2. Cuando el eslabón 2 está a cero grados, el eslabón 5 se encuentra en el ángulo de fase f. La ecuación 4.23c define la relación entre q2 y q5. Tanto l como f son parámetros seleccionados por el ingeniero de diseño junto con las longitudes de los eslabones. Con estos parámetros definidos, las únicas incógnitas que quedan en la ecuación 4.24 son q3 y q4. El comportamiento del mecanismo de cinco barras engranado puede modificarse al cambiar las longitudes de los eslabones, la relación de engranes o el ángulo de fase. El ángulo de fase puede cambiarse simplemente con desengranar los engranes, girar uno con respecto al otro y volverlos a engranar. Como los eslabones 2 y 5 están rígidamente en contacto con los engranes 2 y 5, respectivamente, sus rotaciones angulares relativas también cambiarán. Por ello se producen diferentes posiciones de los eslabones 3 y 4 con cualquier cambio del ángulo de fase. La formas de la curva del acoplador también cambiarán con la variación de cualquiera de estos parámetros





 




.


Comentarios

Entradas populares de este blog

Posición de agarrotamiento

Posiciones de agarrotamiento Una prueba importante se puede aplicar dentro de los  procedimientos de síntesis descritos a continuación. Es necesario verificar que el eslabonamiento en  realidad puede alcanzar todas las posiciones de diseño especificadas sin que encuentre una posición límite. Los procedimientos de síntesis de eslabonamientos a menudo sólo permiten obtener las posiciones particulares especificadas. No indican nada acerca del comportamiento del eslabonamiento entre esas posiciones.  La figura  muestra un eslabonamiento de cuatro barras de no Grashof en sus límites de movimiento llamados posiciones de agarrotamiento. Las posiciones de agarrotamiento se determinan por la colinealidad de dos de los eslabones móviles. C1D1 y C2D2 (líneas sólidas) son las posiciones de agarrotamiento que se alcanzan desde el eslabón 2. C3D3 y C4D4 (líneas punteadas) son las posiciones de agarrotamiento que se alcanzan desde el eslabón 4. Un mecanismo de triple balancín y cua...

Diagrama SVAJ

 ¿Cuáles es la definición de un diagrama de SVAJ?  Son gráficas que muestran la posición, velocidad, aceleración y sobre aceleración del seguidor en un ciclo de rotación  de la leva. Se utilizan para comprobar que el diseño propuesto cumple con la ley fundamental del diseño de levas. Diseñar: Seleccionar las funciones matemáticas a utilizar para definir el movimiento del seguidor, linealizar la leva, desarrollarla de su forma circular. Se gráfica la función de desplazamientos, su primera derivada velocidad (v), su segunda derivada aceleración (a), y su tercera derivada golpeteo (j). Todos los ejes alineados como una función de ángulo de árbol de levas. 

Centros instantáneos

  Un centro instantáneo de velocidad se define como un punto común a dos cuerpos en movimiento plano que tiene la misma velocidad instantánea en cada cuerpo. Los centros instantáneos en ocasiones también se denominan centros o polos. Puesto que se requieren dos cuerpos o eslabones para  crear un centro instantáneo (IC, por sus siglas en inglés), se puede predecir con facilidad la cantidad de centros instantáneos que se puede esperar en cualquier conjunto de eslabones. La fórmula para la combinación de n cosas tomadas de r a la vez es: Por la ecuación 6.8b, se puede ver que un mecanismo de cuatro barras tiene 6 centros instantáneos, uno de seis tiene 15 y uno de ocho tiene 28. La figura 6-5 (p. 252) muestra un mecanismo de cuatro barras en una posición arbitraria. También muestra una gráfica lineal que es útil para rastrear los centros instantáneos encontrados. Esta gráfica particular puede crearse al trazar un círculo en el cual se marcan tantos puntos como eslabones hay en el...