Ir al contenido principal

Mecanismos (Biela_Manivela_Corredera)

 Mecanismos (Biela_Manivela_Corredera)




El sistema funciona de la siguiente forma:

  • El eje tiene un movimiento giratorio que transmite a la manivela.

  • La manivela (o la excéntrica) convierte el movimiento giratorio del eje en uno circular en su empuñadura (eje excéntrico).

  • La cabeza de la biela está unida a la empuñadura de la manivela (eje excéntrico) y, por tanto, está dotada de un movimiento circular.

  • En su movimiento circular, la cabeza de la biela arrastra el pie de biela, que sigue un movimiento lineal alternativo.

La trayectoria seguida por el pie de biela es lineal alternativa, pero la orientación del cuerpo de la biela cambia en todo momento. 

  • La longitud del brazo de la manivela determina el movimiento del pie de la biela (carrera), por tanto, hemos de diseñar la manivela con longitud mucho más corta que la biela.
Carrera=2 veces el radio de la manivela
Carrera del mecanismo biela-manivela
  • Para que el sistema funcione adecuadamente se se deben emplear bielas cuya longitud sea, al menos, 4 veces el radio de giro de la manivela a la que está acoplada.
  • Cuando tenemos que transformar movimiento giratorio en alternativo, el eje de la manivela es el elemento motriz y el pie de biela se conecta al elemento resistente (potencia útil). Esto hace que la fuerza aplicada al eje se reduzca en proporción inversa a la longitud de la manivela, por lo que cuanto mayor sea la manivela menor será la fuerza que aparece en su empuñadura y consecuentemente en el pie de la biela.
  • Las cabezas de las bielas deben de estar centradas en la empuñadura sobre la que giran, por lo que puede ser necesario aumentar su anchura (colocación de un casquillo).


Referencias: 
[1] "Mecanismo biela-manivela". IES MARE NOSTRUM – Instituto de Enseñanza Secundaria y Formación Profesional IES Mare Nostrum, Alicante. https://www.iesmarenostrum.com/departamentos/tecnologia/mecaneso/mecanica_basica/mecanismos/mec_biela-manivela.htm (accedido el 5 de febrero de 2023).

Comentarios

Entradas populares de este blog

Clasificación de las levas

 Clasificación Los mecanismos de leva se pueden clasificar teniendo en cuenta como son la "leva" y el "seguidor". Teniendo en cuenta  la leva a) Leva de placa, llamada también de disco o radial. b) Leva de cuña  c) Leva cilíndrica o de tambor  d) Leva lateral o de cara  Teniendo en cuenta el seguidor  a) Seguidor de cuña  b) Seguidor de cara plana  c) Seguidor de rodillo  d) Seguidor de cara esférica o zapata curva. Otra clasificación de las levas se puede hacer teniendo en cuenta el movimiento del seguidor, pudiendo ser éste rectilíneo alternativo (traslación) u oscilante (rotación). Teniendo en cuenta la posición relativa entre el seguidor y la leva, pueden ser de seguidor centrado, cuando el eje del seguidor pasa por el centro de la leva o de seguidor descentrado.

Posición de agarrotamiento

Posiciones de agarrotamiento Una prueba importante se puede aplicar dentro de los  procedimientos de síntesis descritos a continuación. Es necesario verificar que el eslabonamiento en  realidad puede alcanzar todas las posiciones de diseño especificadas sin que encuentre una posición límite. Los procedimientos de síntesis de eslabonamientos a menudo sólo permiten obtener las posiciones particulares especificadas. No indican nada acerca del comportamiento del eslabonamiento entre esas posiciones.  La figura  muestra un eslabonamiento de cuatro barras de no Grashof en sus límites de movimiento llamados posiciones de agarrotamiento. Las posiciones de agarrotamiento se determinan por la colinealidad de dos de los eslabones móviles. C1D1 y C2D2 (líneas sólidas) son las posiciones de agarrotamiento que se alcanzan desde el eslabón 2. C3D3 y C4D4 (líneas punteadas) son las posiciones de agarrotamiento que se alcanzan desde el eslabón 4. Un mecanismo de triple balancín y cuatro barras tendrá c

Centros instantáneos

  Un centro instantáneo de velocidad se define como un punto común a dos cuerpos en movimiento plano que tiene la misma velocidad instantánea en cada cuerpo. Los centros instantáneos en ocasiones también se denominan centros o polos. Puesto que se requieren dos cuerpos o eslabones para  crear un centro instantáneo (IC, por sus siglas en inglés), se puede predecir con facilidad la cantidad de centros instantáneos que se puede esperar en cualquier conjunto de eslabones. La fórmula para la combinación de n cosas tomadas de r a la vez es: Por la ecuación 6.8b, se puede ver que un mecanismo de cuatro barras tiene 6 centros instantáneos, uno de seis tiene 15 y uno de ocho tiene 28. La figura 6-5 (p. 252) muestra un mecanismo de cuatro barras en una posición arbitraria. También muestra una gráfica lineal que es útil para rastrear los centros instantáneos encontrados. Esta gráfica particular puede crearse al trazar un círculo en el cual se marcan tantos puntos como eslabones hay en el ensamble